DOI:10.13350/j.cjpb.220803

论著。

武汉重症手足口病 EV-A71 分离株全基因组特征分析*

周井义1,史颖颖2,刘永娟3**

(1. 连云港市第一人民医院肛肠科,江苏连云港 222000;2. 江汉大学医学院免疫学教研室;3. 连云港市第一人民医院中心实验室医院)

目的 分析武汉重症肠道病毒 A71型(Enterovirus A71, EV-A71)病毒株全基因组特征。 方法 自湖北武 【摘要】 汉 2 例手足口病Ⅲ期患儿咽拭子中分离 EV-A71,利用 overlap-PCR 扩增 EV-A71 全基因组的 6 个首尾重叠的基因片 段,利用生物信息学软件 DNAStar5.0、MEGA-X和 SimPlot3.5.1 分析基因组特征。 结果 获得2株 EV-A71 分离株 wh064 和 wh170 的全基因组序列, 二者核苷酸和氨基酸序列同源性分别为 99.95% 和 99.86%。2 株 EV-A71 病毒株属 于 C4a2 亚型。系统进化分析和遗传距离计算发现,在 P1 区域,2 株病毒株与 C 基因型 EV-A71 位于同一进化分支,遗 传距离最小;在 P2 区域,2 株病毒株与 B 基因型 EV-A71 和 CVA16 位于同一分支,与 B 基因型 EV-A71 之间遗传距离 最小(C4 亚型除外);在 P3 区域,2 株病毒株与 B3 亚型 EV-A71 和 CVA16 位于同一分支,与 B3 亚型 EV-A71 和 CVA16 之间遗传距离较小。基因重组分析发现,2株分离株 P1 区域与 C 基因型 EV-A71 相似度最高, P2 区域与 B 基因型 EV-A71、CVA4、CVA5、CVA14 和 CVA16 原型株的相似度高于 C 基因型 EV-A71, P3 区域与 B3 亚型 EV-A71、CVA4、 CVA14 和 CVA16 原型株相似度高于其他病毒株,重组断点位于 2A-2B 连接处和 3C 处。此外,2 株病毒株基因组中突 变位点 5'UTR-61T、VP1-27S(L)、VP1-98K 和 3D-396S 亦存在于武汉其他重症和死亡病例 EV-A71 分离株。 结论 武汉2株 EV-A71 是重组病毒株,可能由C基因型和B3亚型 EV-A71 病毒株重组而来,亦或由C基因型 EV-A71和 CVA4、CVA14、CVA16 重组而来。某些位点突变可能影响 EV-A71 毒力。

【关键词】 肠道病毒 A71 型;全基因组;系统进化;遗传距离;基因重组

【中图分类号】 R373.2 【文献标识码】 A 【文章编号】 1673-5234(2022)08-0880-07

[Journal of Pathogen Biology. 2022 Aug. ;17(8):880-886,891.]

Analysis the whole genomic characteristic of EV-A71 strains from the severe cases of hand, foot and mouth disease in Wuhan

ZHOU Jing-yi¹, SHI Ying-ying², LIU Yong-juan³ (1. Department of Anorectal Surgical, the First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China; 2. Department of Immunology, the School of Medicine in Jianghan University; 3. Department of Central Laboratory, the First People's Hospital of Lianyungang)^{***}

[Abstract] Objective To analyze the whole genome characteristics of Enterovirus A71 (EV-A71) strains isolated in severe cases in Wuhan. Methods Two EV-A71 strains were isolated from two cases of II phase hand, foot, and mouth disease (HFMD) in Wuhan, Hubei. Six gene fragments covered EV-A71 whole genome which overlapped the head and tail with each other were amplified by the overlap-PCR method, and the genomic characteristics was analyzed by the bioinformatics softwares DNAStar, MEGA-X, and SimPlot3. 5.1. Results The whole genomic sequences of two EV-A71 strains wh064 and wh170 were obtained. The identities of nucleotide and amino acid sequences between these two strains were 99.95% and 99.86%, respectively. These two EV-A71 isolates were both belonged to C4a2 subgenotype. The phylogenetic analysis and genetic distance calculation found that in P1 region, these two strains and C genotype EV-A71 strains were clustered into the same branch with the lowest genetic distance. In P2 region, these two strains were clustered into the same branch with B genotype EV-A71 and CVA16. These two strains shared the lowest genetic distance with B genotype EV-A71 (except C4 EV-A71 strains) in P2 region. In P3 region, these two strains were clustered into the same branch with B3 subgenotype EV-A71 and CVA16. These two strains shared low genetic distance with B3 genotype EV-A71 and CVA16 in P3 region. The gene recombination analysis found that the isolates shared the highest similarity with C genotype EV-A71 strains in P1 region while they shared higher similarity with B genotype EV-A71 strains, CVA4, CVA5, CVA14, and CVA16 prototype strains than C genotype EV-A71 strains in P2 region, and they shared higher similarity with B3 subgenotype EV-A71 strains, CVA4, CVA14, and CVA16 prototype strains than other strains in P3 region.

** 【通讯作者】 刘永娟, E-mail: lyjquanzhiyuan_09@163. com
 【作者简介】 周井义(1985-), 男, 安徽人, 硕士研究生, 主治医师。主要研究方向: 肠道疾病的诊治。E-mail: jyzhou2013@163. com

^{* 【}基金项目】 江苏省自然科学基金资助课题(No. BK20180269);湖北省自然科学基金资助课题(No. 2018CFB254);武汉市新冠肺炎疫情 防控应急科研专项资助课题(No. EX20D04)。

• 881 •

The recombination breakpoints were located in the 2A/2B junction and 3C region, respectively. Moreover, mutations 5'UTR-61T, VP1-27S(L), VP1-98K and 3D-396S in the genome of these two isolates were also appeared in other EV-A71 strains isolated from the severe and fatal cases in Wuhan. **Conclusion** These two EV-A71 isolates in Wuhan were recombinant viruses that might derive from the recombination between C genotype and B3 subgenotype EV-A71 strains or the recombination among C genotype EV-A71 and CVA4, CVA14, CVA16 strains. And mutations in some sites might affect EV-A71 virulence.

[Key words] Enterovirus A71; whole genome; phylogenetic; genetic distance; gene recombination

肠道病毒 A71 型(Enterovirus 71, EV-A71) 是导 致婴幼儿手足口病(hand, foot and mouth disease, HFMD) 重症和死亡的主要病原体。EV-A71 是小 RNA 病毒科肠道病毒属成员,基因组由一个开放阅读 框(open reading frame, ORF)及其两端的非翻译区 (un-translated region, UTR) 5'UTR 和 3'UTR 组成, ORF 编码 4 种结构蛋白 VP1-VP4 和 7 种非结构蛋白 2A-2C和3A-3D。不同于其他人类A组肠道病毒 (Enteroviruses A group, EV-A)如柯萨奇病毒 A 组 (Coxsackievirus A group, CVA)成员 CVA2-8、 CVA10、CVA12、CVA14 和 CVA16, EV-A71 引起的 HFMD 更易导致神经系统并发症,甚至死亡^[1]。EV-A71 灭活疫苗上市,为预防 EV-A71 引起的 HFMD 提供了有效手段^[2]。然而,虽然 EV-A71 灭活疫苗接 种率逐年升高,但仍处于偏低水平[3-4]。目前尚无特异 性抗 EV-A71 药物, HFMD 仍是我国迫切需要解决的 公共卫生问题^[5]。近年来 HFMD 病原谱发生改变, CVA6 和 CVA10 等病原逐渐取代 EV-A71 和 CVA16 成为 HFMD 的优势病原,开发多价疫苗迫在眉睫。 本研究对武汉2株重症 EV-A71 病毒株的全基因组进 行分段扩增和序列分析,旨在了解包括基因分型、基因 重组和突变等在内的遗传进化特征,为 EV-A71 减毒 活疫苗和 HFMD 多价疫苗的研发提供数据支持。

材料与方法

1 EV-A71 病毒株来源

2 株 EV-A71 病毒株(wh064-CHN-2010 和 wh170-CHN-2012)由武汉大学基础医学院病原生物 与感染性疾病研究所提供。病毒株均分离自武汉市重 症 HFMD 患儿,患儿表现 2 期临床症状,如高热、肢体 抖动、易惊、精神不振等。

2 病毒 RNA 提取及逆转录

取 200 µl 病毒液接种于 Vero 细胞,培养至 80% 以上细胞变圆脱落,收集细胞病毒混悬液,利用 TI-ANamp Virus RNA Kit(天根公司产品)提取病毒 RNA。利用 Revert Aidtm First Strand cDNA Synthesis Kit(加拿大 Fermentas 产品)逆转录得到单链 cDNA 产物,-20 ℃保存。

3 病毒全基因组扩增及测序

根据中国大陆流行的 C4 基因亚型 EV-A71 病毒 株全基因组的保守区域,利用 Primer Premier 5.0 设 计并合成 6 对首尾重叠引物(表 1)。利用 PCR 扩增 覆盖病毒株全基因组的 6 个片段 F1-F6,扩增体系: cDNA 模板 1 μ l,上、下游引物 10 μ mol/L 各 0.5 μ l, dNTP 0.5 μ l,高保真 DNA 聚合酶 ExTaq(Takara,日 本)0.125 μ l,10×缓冲液 2.5 μ l,补充无菌去离子水至 25 μ l。扩增条件:95 ℃预变性 5 min;95 ℃变性 30 s, 64 ℃退火(F1-F4 片段)或 48 ℃退火(F5 和 F6 片段) 45 s,72 ℃延伸 90 s,共 32 个循环;72 ℃再延伸 10 min。扩增片段经 10%琼脂糖凝胶电泳、纯化回收后 连接 T 载体,转化大肠埃希菌感受态细胞 DH5 α ,经菌 液 PCR 后质粒提取进行酶切鉴定,对阳性克隆进行双 向测序。

表 1 EV-A71 全基因组分段扩增引物 Table 1 Primers for amplifying the fragments of EV-A71 genome

		·····
扩增片段 Amplified fragments	引物 Primers	引物序列(5-3) Primer sequences (5-3)
ring		· · · · · · · · · · · · · · · · · · ·
F1	F1	TTAAAACAGCCTGTGGGTTGCAC
1.1	$ \begin{array}{cccccc} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	
F.9	F2	CACAATTCCACTACCTCTACCGATC
F2	R2	GTGTCTCAATCATGCTCTCGTCA
F3 F3 CAACCTC	GTCATCGACTGGATACAGGCAAGGT	
	R3	CAACCTCCCTTGAGACTGCGTCAGT
E4	F4	CGTGTCCGACTACATCAAGGGT
F 4	R4	CTGGCGCACTTCTTCACTATCTAC
E.	F5	TCTTTTCCAAGGTCCAC
Po	R 5	GACATAAGTGGAGTAAGGAAG
E.c	F6	ATTAATACCTCTCAAATGAGCATG
ГO	R6	GCTATTCTGGTTATAACAAATTTACC

4 生物信息学分析

利用 DNAStar5.0 软件拼接病毒株基因片段,得 到2株 EV-A71病毒株的全基因组序列。从 GenBank 获取 27株已知基因型的 EV-A71病毒株、6株武汉地 区其他已知临床症状的 EV-A71病毒株和 CVA2-8、 CVA10、CVA12、CVA14、CVA16 原型株的全基因组 序列作为参照序列(表 2)。

4.1 系统进化树构建 基于病毒株的 VP1、全基因组、P1、P2 和 P3 区域的核苷酸序列,利用 MEGA-X 软件 Neighbor-Joining 法构建系统进化树。

表 2 EV-A 病毒株全基因组序列信息 Table 2 Information of the whole genome sequences of EV-A strains

登录号	病毒株名称	基因型
Accession No.	Virus strain name	Genotype
U22521	BrCr	А
KF501389	EV71/wuhan/3018/2010	А
FJ357379	236-TW86	B1
FJ357382	238-TW86	B1
U22522	MS/7423/87	B2
AB575923	20233	B2
AM396588	EV71/SAR/SHA63	B3
DQ341367	MY821-3-SAR-97	B3
AJ586873	EV71/9/97/SHA89	B4
AF316321	5865/sin/000009	B4
D Q 341363	S19841-SAR-03	B5
KU647000	CQ2014-86	B5
D Q 452074	804/NO/03	C1
D Q 341361	1M-AUS-12-00	C1
AF176044	1245a-98-tw	C2
MG214681	30-2/2015/BJ	C2
MN747117	wh064-CHN-2010	分离株 isolate
MN747118	wh170-CHN-2012	分离株 isolate
AY421760	CVA2 Fleetwood	原型株 prototype
AY421761	CVA3 Olson	原型株 prototype
AY421762	CVA4 High Point	原型株 prototype
AY421763	CVA5 Swartz	原型株 prototype
AY421764	CVA6 Gdula	原型株 prototype
DQ341355	06-KOR-00	C3
DQ341356	03-KOR-00	C3
EF063152	E2005125-TW	C5
EU527983	2007-07364	C5
AY465356	SHZH03	C4a1
EU753375	521-18S/SD/CHN/07	C4a2
KY612315	2015g03	C4a2
MG875331	160-50	C4a2
AF302996	SHZH98	C4b
HQ188292	Fuyang-0805a	C4b
HQ694983	BZ200805	C4b
KM591215	wh029	C4a2
JX986737	Wuhan1042/HuB/CHN/2011	C4a2
JX986738	Wuhan1117/HuB/CHN/2011	C4a2
JX986739	Wuhan1143/HuB/CHN/2011	C4a2
KJ508182	Hubei-HG/CHN/2012	C4a2
KP198623	Hubei-WH/CHN/2012	C4a2
AY421765	CVA7 Parker	原型株 prototype
AY421766	CVA8 Donovan	原型株 prototype
AY421767	CVA10 Kowalik	原型株 prototype
AY421768	CVA12 Texas-12	原型株 prototype
AY421769	CVA14 G-14	原型株 prototype
U05876	CVA16 G-10	原型株 prototype

4.2 基因重组分析 利用 SimPlot3.5.1 软件分析武 汉病毒株的基因重组情况,以 wh064-CHN-2010 全基 因组序列为查询序列,不同基因型(A,B1-B5,C1-C3, C5)的 EV-A71 病毒株和 CVA2-8、CVA10、CVA12、CVA14、CVA16 原型株的全基因组序列为参照序列, 进行 Similarity plot 和 bootscan 分析。

4.3 遗传距离分析 利用 MEGA-X 软件 DIS-

TANCE 程序计算 2 株 武 汉 病 毒 株 (wh064-CHN-2010 和 wh170-CHN-2012) 与其他病毒株在不同区域 核苷酸和氨基酸序列的遗传距离。核苷酸及氨基酸序 列比对:6 株已知临床症状的武汉 EV-A71 病毒株中, 2 株 来 自 轻 症 病 例 wh029 (KM591215) 和 Wuhan1143/HuB/CHN/2011(JX986739),2 株来自重症 病 例 Wuhan1042/HuB/CHN/2011 (JX986737) 和 Wuhan1117/HuB/CHN/2011(JX986738),2 株来自 死亡病例 Hubei-HG/CHN/2012(KJ508182) 和 Hubei-WH/CHN/2012(KP198623),利用 DNAStar 软 件 MegAlign 程序进行序列比对分析。

结果

1 病毒扩增培养

Vero 细胞感染 EV-A71 病毒株 wh064 和 wh170 后出现典型的肠道病毒样细胞病变效应,如细胞变圆、 空泡、皱缩,细胞折光性增强,最后胞体破碎脱落(图 1)。病毒颗粒存在于细胞碎片和上清液中,收集悬液 -80 ℃保存。

A 无病毒感染的 Vero 细胞形态 B wh064 感染的细胞形态 C wh170 感染的细胞形态

图 1 EV-A71 感染 Vero 细胞所致细胞病变效应

A The morphology of Vero cells with no virus infection B The morphology of Vero cells infected by wh064 C The morphology of Vero cells infected by wh170

Fig. 1 The cytopathic effect of Vero cells induced by EV-A71 infection

2 病毒基因组扩增和测序

从病毒标本中提取总 RNA,逆转录为 cDNA 后 分别扩增 EV-A71 全基因组的 6 个片段,扩增产物经 10%琼脂糖凝胶电泳,F1-F6 片段与预期大小相符(图 2)。经测序和序列拼接,获得 wh064 和 wh170 全基因 组序列,并上传到 GenBank 数据库,基因登录号分别 为 MN747117 和 MN747118。二者全基因组核苷酸 和氨基酸序列同源性分别为 99.95%和 99.86%,全基 因组长度均为 7 405 bp,5'UTR 包含 742 个碱基, 3'UTR 包含 81 个碱基,编码区包含 6 582 个碱基,编 码 2 193 个氨基酸。与其他 EV-A71 病毒株相比,二 者编码区无核苷酸的缺失和插入。

3 病毒基因型分析

以衣壳蛋白 VP1、全基因组、P1、P2 和 P3 区域核 苷酸序列构建系统进化树(图 3),结果显示 wh064 和 wh170 同 C4a2 病毒株位于同一进化分支,表明 2 株 病毒株的基因型为中国大陆流行株 EV-A71 主导基因 亚型 C4a2。基于 VP1(图 3A)、全基因组(图 3B)和 P1 (图 3C)序列构建的进化树的拓扑结构非常相似,C4 亚型 EV-A71 病毒株与 C1、C2、C3 和 C5 亚型 EV-A71 病毒株位于同一进化分支,远离 A 型、B1-B5 亚 型 EV-A71 病毒株和 CVA16 原型株;基于 P2 序列构 建的进化树(图 3D)显示所有 C4 亚型 EV-A71 病毒株 与 B1-B5 亚型 EV-A71 病毒株和 CVA16 原型株位于 同一进化分支,远离 A 型、C1、C2、C3 和 C5 亚型 EV-A71 病毒株;基于 P3 序列构建的进化树(图 3E)显示 所有 C4 亚型 EV-A71 病毒株与 B3 亚型 EV-A71 病 毒株和 CVA16 原型株位于同一进化分支,远离 A 型、 B1、B2、B4、B5、C1、C2、C3 和 C5 亚型 EV-A71 病毒株。

M1 DS5000 DNA 标志物 M2 1 kb ladder DNA 标志物 F1-F6 6 对引物扩增的相应基因片段

图 2 PCR 分段扩增 EV-A71 wh064 基因组(A)和 wh170 基因组(B)

A The amplified fragments of wh064 genome B The amplified fragments of wh170 genome M1 Is DS5000 DNA Marker M2 Is 1kb ladder DNA Marker F1-F6 Indicate the gene fragments amplified by six pairs of primers

Fig. 2 The complete genome of EV-A71 amplified by PCR

A VP1序列构建系统进化树 B 全基因组序列构建系统进化 树 C P1区域序列构建系统进化树 D P2区域序列构建系统进化 树 E P3区域序列构建系统进化树。●代表武汉 EV-A71分离株 图 3 EV-A71系统进化分析

A The phylogenetic tree was constructed based on the VP1 gene B The phylogenetic tree was constructed based on the whole genome C The phylogenetic tree was constructed based on the P1 region D The phylogenetic tree was constructed based on the P2 region E The phylogenetic tree was constructed based on the P3 region. \bullet indicates the EV-A71strains isolated in Wuhan.

Fig. 3 The phylogenetic trees of EV-A71

4 遗传距离分析

计算2株病毒株和已知基因型EV-A71参照株及 CVA16 原型株在不同区域核苷酸和氨基酸序列之间 的遗传距离结果见表 3。2 株病毒与 C4 亚型 EV-A71 病毒株在全基因组及其内部任何区域的核苷酸和氨基 酸序列之间的遗传距离均最小,且与 C4a2 病毒株之 间的遗传距离小于 C4a1 和 C4b 病毒株。此外,2 株病 毒与 B3 亚型 EV-A71 病毒株全基因组核苷酸序列和 编码区氨基酸序列之间的遗传距离较小,分别为 0.1988 和 0.0294,小于 C4 亚型以外的其他 EV-A71 病毒株和 CVA16 原型株。在 5'UTR 中,2 株病毒与 B3 和 C3 亚型 EV-A71 病毒株遗传距离较小,分别为 0.1502 和 0.1488;在 3'UTR 中,2 株病毒与 B3 亚型 EV-A71 病毒株和 CVA16 原型株遗传距离较小,分别 为 0.0659 和 0.0937。在 P1 区域,2 株病毒与 C 型 EV-A71 病毒株遗传距离小于 B型 EV-A71 病毒株和 CVA16 原型株;在 P2 和 P3 区域,2 株病毒与 C 型 EV-A71 病毒株(除 C4 以外)遗传距离大于 B 型 EV-A71 病毒株和 CVA16 原型株;在 P3 区域,2 株病毒与 CVA16 原型株的核苷酸和氨基酸遗传距离分别为 0.1917 和 0.0317,小于 C4 亚型以外的 EV-A71 病毒 株。

5 病毒重组分析

利用 SimPlot3.5.1 软件分析病毒株 wh064 基因 重组情况,结果见图 4。Similarity 分析发现(图 4B), 在 P1 和 2A 区域, wh064 与 C 型 EV-A71 病毒株相似 度高于 B 型 EV-A71 病毒株;2B-3C 区域,wh064 与 B 型 EV-A71 病毒株、CVA4、CVA5、CVA14 和 CVA16 原型株相似度高于 C1、C2、C3 和 C5 亚型 EV-A71 病 毒株,在随后的 3D 区域,wh064 与 B1、B2、B4、B5 亚 型 EV-A71 病毒株和 CVA5 原型株相似度下降,与 B3 亚型 EV-A71 病毒株和 CVA4、CVA14 及 CVA16 原 型株相似度仍高于 C1、C2、C3、C5 亚型 EV-A71 病毒 株。BootScan 分析发现(图 4C), wh064 全基因组中 可能存在多个重组断点,分别位于5'UTR末端、2A-2B 连接处和 3C-3D 连接处。因此, wh064 可能由 C 基因型和 B3 亚型 EV-A71 病毒株重组进化而来,亦 或由C基因型和CVA4、CVA14、CVA16病毒株重组 进化而来。

6 核苷酸及氨基酸序列比对

将 wh064 和 wh170 与武汉地区其他引起 HFMD 轻症、重症和死亡病例的 6 株 EV-A71 全基因组序列 进行比对,结果见表 4。5'UTR 中有 49 个位点碱基有 差异, Hubei-WH 有 2 个碱 基插入(5'UTR-100C/ 101C), wh029 有 1 个碱 基插入(5'UTR-181T), wh064、wh170 和其余 4 株病毒株在 5'UTR-100/101

中国病原生物学杂志 2022年08月 第17卷第08期 Journal of Pathogen Biology Aug. 2022, Vol. 17, No. 08

表 3 两株 EV-A71 与其他 EV-A 病毒株核苷酸和氨基酸序列之间的遗传距离 Table 3 Genetic distance in the nucleotide and amino acid sequences between two EV-A71 strains and other EV-A strains

基因型	基因组	FUTD	9/UTD	编码区	P1	P2	P3	
Genotype	Genome	9 U I K	3 U I K	Coding region nt ^a (aa) ^b	nt (aa)	nt (aa)	nt (aa)	
А	0.2356	0.1628	0.1979	0.2452(0.0460)	0.2198(0.0300)	0.2561(0.0388)	0.2670(0.0702)	
B1	0.2121	0.1608	0.2597	0.2185(0.0421)	0.2045(0.0306)	0.2057(0.0379)	0.2451(0.0588)	
B2	0.2155	0.1727	0.2293	0.2205(0.0431)	0.1979(0.0306)	0.2104(0.0370)	0.2555(0.0623)	
B3	0.1988	0.1502	0.0659	0.2054(0.0294)	0.2062(0.0294)	0.2041(0.0201)	0.2056(0.0365)	
B4	0.2146	0.1541	0.2570	0.2211(0.0402)	0.2117(0.0294)	0.2147(0.0334)	0.2373(0.0581)	
B5	0.2179	0.1508	0.2378	0.2054(0.0413)	0.2140(0.0306)	0.2110(0.0334)	0.2502(0.0599)	
C1	0.2078	0.1796	0.1825	0.2112(0.0412)	0.1403(0.0123)	0.2385(0.0442)	0.2786(0.0730)	
C2	0.2001	0.1530	0.1983	0.2055(0.0389)	0.1300(0.0082)	0.2374(0.0406)	0.2758(0.0741)	
C3	0.1993	0.1488	0.1966	0.2051(0.0407)	0.1340(0.0117)	0.2362(0.0397)	0.2696(0.0758)	
C5	0.2113	0.1516	0.1966	0.2177(0.0412)	0.1494(0.0134)	0.2501(0.0442)	0.2773(0.0716)	
C4	0.0616	0.0286	0.0472	0.0656(0.0172)	0.0623(0.0120)	0.0703(0.0155)	0.0657(0.0246)	
C4a1	0.0715	0.0320	0.0520	0.0763(0.0186)	0.0713(0.0128)	0.0782(0.0122)	0.0807(0.0303)	
C4a2	0.0421	0.0241	0.0212	0.0445(0.0103)	0.0442(0.0078)	0.0446(0.0087)	0.0449(0.0145)	
C4b	0.0778	0.0321	0.0839	0.0831(0.0237)	0.0775(0.0160)	0.0934(0.0235)	0.0816(0.0328)	
CVA16	0.2704	0.1858	0.0937	0.2834(0.1057)	0.4223(0.2364)	0.2252(0.0263)	0.1917(0.0317)	

注(Notes):^a核苷酸(nucleotide);^b氨基酸(amino acid)。

A The simplified diagram of the complete genome of EV-A71 B The Similarity analysis with the whole genome sequence of wh064 as query sequence C The BootScan analysis with the whole genome sequence of wh064 as query sequence.

Fig. 4 The recombination analysis of EV-A71 genome

/181 位点缺失。在 5'UTR 中,有 3 个位点 499G/ 698G/724C 为 wh064 和 wh170 所特有,其他 6 株病 毒株均为 499A/698A/724T。wh064 和 wh170 的 5'UTR-61T 位点与致死毒株 Hubei-HG 相同,而 5'UTR-411A/574C 位点与轻症株 Wuhan1143 相同。 3'UTR 中仅 2 个位点碱基有差异,wh029 株为 6G/ 11T,其余病毒株为 6A/11C,其他位点均相同。ORF 编码区有 510 个位点碱基有差异,翻译成氨基酸后仅 47 个位点有差异。其中,7 个位点氨基酸为 wh064 和 wh170 所特有,即 VP1-31D、2A-57N、2C-200M、3A-11N、3C-158I 和 3D-75R/362L,其余 6 株病毒株均为 VP1-31N、2A-57D、2C-200I、3A-11S、3C-158V 和 3D-75K/362P。3 个位点氨基酸为 wh064 所特有,即 VP4-69R、VP1-94A 和 3D-436I,其余 7 株病毒株均为 VP4-69K、VP1-94D 和 3D-436T。此外,3 个位点氨基 酸突变存在重症株中,即 VP1-27S(L)、VP1-98K 和 3D-396S,而 2 株轻症病毒株中均为 VP1-27P、VP1-98E 和 3D-396R。

7 毒力位点分析

基于已报道的 EV-A71 基因组中潜在的毒力位点 (表 5)分析 wh064 和 wh170 及其余 6 株武汉地区已 知临床症状的 EV-A71 病毒株在这些位点的核苷酸和 氨基酸残基分布。结果发现,仅 VP1 中 27、31 和 98 位点的氨基酸有差异,而在其他已公布的可能的毒力 位点上,武汉重症株和轻症株的核苷酸和氨基酸完全 相同。

讨 论

本研究通过分段 PCR 扩增和测序获得 2 株武汉 EV-A71 病毒株的全基因组序列,经系统进化分析,2 株病毒株(wh064 和 wh170)属于基因亚型 C4a2,与目 前我国 EV-A71 流行的优势株相符。基于基因组不同 区域核苷酸序列构建的系统进化树、基因重组和遗传 距离分析表明这 2 株病毒均为重组病毒。序列比对显 示,毒株 wh064 和 wh170 与武汉同期流行的其他 EV-A71 病毒株存在核苷酸和氨基酸差异,但这些位点突 变是否影响 EV-A71 毒力尚需深入研究。

基因型 Genotype	毒力位点 Virulent site	wh064 (重症) Severe	wh170 (重症) Severe	wh029 (轻症) Mild	Wuhan1143 (轻症) Mild	Wuhan1042 (重症) Severe	Wuhan1117 (重症) Severe	Hubei-HG (死亡) Death	Hubei-WH (死亡) Death
	VP1:E98K ↑	Κ	Κ	Е	Е	Κ	К	К	Е
$\mathrm{B}^{\lceil 6 celos}$	E145 Q ↑	Е	Е	Е	Е	Е	Е	Е	Е
	D164E †	D	D	D	D	D	D	D	D
	VP1:E145G/Q/R↑	Е	Е	Е	Е	Е	Е	Е	Е
	D164E †	D	D	D	D	D	D	D	D
A, B1-B5,	2A:M68K ↑	М	М	М	М	М	М	М	М
$C1-C5^{[7]}$	5'UTR:272G ↑	А	А	А	А	А	А	А	А
	488U ↑	С	С	С	С	С	С	С	С
	700A/U ↑	Т	Т	Т	Т	Т	Т	Т	Т
	VP1:V249I↓	V	V	V	V	V	V	V	V
a . [8]	3C:A180V/C↓	А	А	А	А	А	А	А	А
	$5'$ UTR:C241T \downarrow	Т	Т	Т	Т	Т	Т	Т	Т
C4a ²¹³	A571T ↓	Т	Т	Т	Т	Т	Т	Т	Т
	С579Т↓	Т	Т	Т	Т	Т	Т	Т	Т
	3′UTR:T11C↓	С	С	С	С	С	С	С	С
$\mathrm{C4}^{[9]}$	3C : N69D↓	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
	5′UTR:C115T↓	С	С	С	С	С	С	С	С
	VP1:H22Q/R↓	Н	Н	Н	Н	Н	Н	Н	Н
	V249I ↓	V	V	V	V	V	V	V	V
	A289T ↓	А	А	А	А	А	А	А	А
	P27S↑	S	S	Р	Р	Р	Р	Р	L
$C4^{[10]}$	N31S/D ↑	D	D	Ν	Ν	Ν	Ν	Ν	Ν
	E98K ↑	Κ	Κ	Е	Е	К	K	K	Е
	E145G/Q ↑	Е	Е	Е	Е	Е	Е	Е	Е
	D164E ↑	D	D	D	D	D	D	D	D
	T240A/S ↑	Т	Т	Т	Т	Т	Т	Т	Т
$C4^{[11]}$	VP1 : K215A ↑	Κ	Κ	Κ	Κ	К	K	Κ	К
$NA^{[12]}$	3C : T79V ↑	Т	Т	Т	Т	Т	Т	Т	Т
B4 ^[13]	3D:G64R ↓	G	G	G	G	G	G	G	G

表 5 武汉 EV-A71 病毒株中位于已报道的潜在毒力位点上的氨基酸残基 Table 5 The amino acid residues located in the reported potential virulent sites of Wuhan EV-A71 strains

注(Notes):NA,not available; ↑ 毒力增强(indicates enhanced virulence); ↓ 毒力减弱(indicates weaken virulence)。

基因重组在肠道病毒进化过程中发挥重要作 用^[14]。EV-A71 基因组的重组事件包括 EV-A71 不 同基因亚型之间的型内重组和 EV-A71 与其他 HEV-A 病毒株之间的型外重组。以往研究 EV-A71 基因重 组时多以最古老的病毒株基因组序列为查询序列[15], 本研究分析武汉重症 EV-A71 病毒株 wh064 和 wh170 的全基因组序列特征时以 wh064 为查询序列 进行重组分析。结果发现2株病毒株 P1 区域与C基 因型 EV-A71 病毒株遗传距离最小,且位于同一进化 分支, 而 P2 和 P3 区域则与 B 基因型 EV-A71 病毒株 和 CVA16 原型株遗传距离较小,且位于同一进化分 支,与基因重组分析结果一致。Yoke-Fun 等^[15]以中 国大陆最古老的 C4b 病毒株 SHZH98 和 C4a1 病毒株 SHZH03 为查询序列进行重组分析,发现 C 和 B 基因 型 EV-A71 病毒株及 CVA4、CVA5、CVA14、CVA16 之间存在重组。这一基因重组现象亦发生在泰国[16] 和中国^[17]流行的 EV-A71。在 P1 和 2A 区域(550-3720nt), wh064 与所有 C 基因型病毒株相似度高于 B1-B5 和 CVA2-8、CVA10、CVA14、CVA16,在 2B-3C 区域(3720-5900nt),wh064 与 B1-B5 基因型 EV-A71 和 CVA4、CVA5、CVA14、CVA16 相似度高于 C1-C3 和 C5 基因型 EV-A71,而在 3C-3'UTR 区域,wh064 与 B1、B2、B4、B5 基因型 EV-A71 和 CVA5 病毒株相 似度下降,而与 B3 基因型 EV-A71 和 CVA4、 CVA14、CVA16 的相似度仍高于 C1-C3 和 C5 基因型 EV-A71。因此,包括 wh064 和 wh170 在内的 C4 病 毒株可能存在两种重组方式,即由 C 基因型 EV-A71 与 B3 基因亚型 EV-A71,或由 C 基因型 EV-A71 与 CVA4、CVA14、CVA16 重组进化而来。

肠道病毒基因组中非编码区发生基因重组的频率 较高^[16]。本研究发现的重组断点分别位于 5'UTR 末 端、2A-2B 连接处和 3C-3D 连接处。可能的原因如 下:一方面,EV-A71 分离株 P1 区域与 CVA16 原型株 之间的遗传距离最大,同源性最小,不易发生重组,而 5'UTR、P2 和 P3 区域与其他 HEV-A 病毒株遗传距 离较小,同源性高,易发生重组;另一方面,P1 区域编 码 EV-A71 衣壳蛋白,重组后可能导致病毒颗粒丧失 感染性,而 5'UTR 区域含有病毒转录激活的关键元 件-内部核糖体进入位点^[18], P2 和 P3 区域编码各种 蛋白水解酶和聚合酶^[19], 重组后 EV-A71 的复制增殖 能力增强。这些重组病毒株的优势在进化过程中进一 步积累, 伴随易感人群的增加而持续流行。

表 4 两株 EV-A71 与其他已知临床症状的 EV-A71 病毒株核苷酸和氨基酸序列比对 Table 4 The alignment of nucleotide and amino acid sequences between two EV-A71 isolates and other EV-A71 strains with known clinical symptoms

区域 Region	位点 Site	wh064 重症 Severe	wh170 重症 Severe	wh029 轻症 Mild	Wuhan 1143 轻症 Mild	Wuhan 1042 重症 Severe	Wuhan 1117 重症 Severe	Hubei -HG 死亡 Death	Hubei -WH 死亡 Death
	61	Т	Т	С	С	С	С	Т	С
	411	А	А	G	А	G	G	G	G
5'UTD	499	G	G	А	А	А	А	А	А
5 UIK	574	С	С	Т	С	С	С	С	С
	698	G	G	А	А	А	А	А	А
	724	С	С	Т	Т	Т	Т	Т	Т
VP4	69	R	Κ	Κ	Κ	Κ	Κ	Κ	Κ
VP1	27	S	S	Р	Р	Р	Р	Р	L
	31	D	D	Ν	Ν	Ν	Ν	Ν	Ν
	94	А	D	D	D	D	D	D	D
	98	Κ	Κ	Е	Е	Κ	Κ	Κ	Е
2A	57	Ν	Ν	D	D	D	D	D	D
2C	200	М	М	Ι	Ι	Ι	Ι	Ι	Ι
3 A	11	Ν	Ν	S	S	S	S	S	S
3C	158	Ι	Ι	V	V	V	V	V	V
	75	R	R	Κ	Κ	Κ	Κ	Κ	Κ
2D	362	L	L	Р	Р	Р	Р	Р	Р
3D	396	S	S	R	R	R	R	S	S
	436	Ι	Т	Т	Т	Т	Т	Т	Т

目前,影响 EV-A71 易感性和致病力的因素仍不 明确。除宿主因素外,基因组变异可能是毒株适应性 和致病性的重要决定因素^[20]。有研究报道 VP1 核心 区域正电荷氨基酸 98K、145Q 和 164E 增强 B 型 EV-A71 毒力^[6], 3C 蛋白酶 T79V 突变促进 EV-A71 复 制^[12]。Yee 等^[21]报道 EV-A71 缺失 5'UTR-475~485 位点 11 个核苷酸后毒力减弱,引入 5'UTR-700C、 VP1-98E/145G/242K/244K 和 3D-64R 后毒力增强。 Li 等^[9]的研究发现非编码区 5'UTR-115T/132C、 3'UTR-23G 和编码区 VP1-74G、VP3-214V、2A-75G、 2B-2A、2B-50T、3C-49I/69D 和 3D-415A 减弱 EV-A71 毒力。可见, EV-A71 基因组中某些位点突变能 够影响病毒的毒力。本研究显示 wh064 和 wh170 非 编码区 6 个位点核苷酸和编码区 13 个位点氨基酸发 生改变,其中4个位点5'UTR-61T、VP1-27S(L)、 VP1-98K和 3D-396S 亦出现在武汉地区其他重症和 死亡病例分离株中。基于衣壳蛋白 VP1 在 EV-A71 宿主适应性和免疫原性中的重要作用^[22],Liu 等^[10]提 出"三明治开关"模型假说阐明 VP1 多态性影响 EV-A71 毒力的可能机制,即 VP1-22H/249V/289A 保守

不突变,而 VP1核心区域某些氨基酸突变成正电荷或 疏水性氨基酸(如 27S、31S/D、98K、145G/Q、164E和 240A/S), EV-A71 毒力增强。本研究比对分析 wh064、wh170和武汉地区其他6株已知临床症状的 EV-A71基因组中在已报道的潜在毒力位点上的核苷 酸或氨基酸残基分布,发现仅 VP1-27/31/98 位点的 氨基酸有差异,而在其他已公布的毒力位点上病毒株 核苷酸和氨基酸完全相同。这与毒力模型假说符合, 提示该毒力模型对中国大陆 C4 病毒株毒力位点预测 的适用性。这些位点与 EV-A71 神经毒性是否相关以 及如何发挥作用尚需进一步研究。

本研究得到2株重症 EV-A71 的全基因组序列, 为武汉乃至我国 EV-A71 全基因组数据库及分子流行 病学研究积累了相关资料,基于不同区域构建进化树 的不一致性提示了从全基因组水平研究 EV-A71 遗传 进化特征以监测新型毒株的重要性,此外,全基因组核 苷酸和氨基酸差异比对为进一步确认 EV-A71 毒力位 点提供了一定参考,为 EV-A71 减毒活疫苗和 HFMD 多价疫苗的研发提供了数据支持。

【参考文献】

- [1] Chang LY, Lin HY, Gau SS, et al. Enterovirus A71 neurologic complications and long-term sequelae [J]. J Biomed Sci, 2019, 26 (1):57.
- [2] 贾斯月,李靖欣,朱凤才. 基于 EV71疫苗接种的江苏省手足口病 动力学模型研究[J]. 中华疾病控制杂志,2019,23(3):253-258.
- [3] 杨芬,梁文佳,孙立梅,等. 广东省 EV71 疫苗接种水平与手足口 病流行分析[J]. 中国公共卫生,2020,36(3):351-354.
- [4] 刘艳,杜渐,王骏,等. 杭州市儿童肠道病毒 71 型灭活疫苗接种特征分析[J]. 国际流行病学传染病学杂志,2020,47(1):38-41.
- [5] 卞莲莲,刘思远,姜崴,等.多价手足口病疫苗:现实与梦想[J].中国生物制品杂志,2020,33(1):106-112.
- [6] Huang SW, Tai CH, Fonville JM, et al. Mapping Enterovirus A71 antigenic determinants from viral evolution [J]. J Virol, 2015, 89 (22):11500-11506.
- [7] Li R, Zou Q, Chen L, et al. Molecular analysis of virulent determinants of enterovirus 71 [J]. PLoS One, 2011,6(10);e26237.
- [8] Wen H, Si Ly, Yuan X, et al. Complete genome sequencing and analysis of six enterovirus 71 strains with different clinical phenotypes[J]. Virol J, 2013(10):115.
- [9] Li P, Yue Y, Song N, et al. Genome analysis of enterovirus 71 strains differing in mouse pathogenicity [J]. Virus Genes, 2016, 52(2):161-171.
- [10] Liu Y, Fu C, Wu S, et al. A novel finding for enterovirus virulence from the capsid protein VP1 of EV71 circulating in mainland China [J]. Virus Genes, 2014, 48(2):260-272.
- [11] Yuan S, Li G, Wang Y, et al. Identification of positively charged residues in enterovirus 71 capsid protein VP1 essential for production of infectious particles [J]. J Virol, 2015, 90 (2): 741-752.

- [2] Wang T, Han Y, Pan Z, et al. Seroprevalence of *Toxoplasma gondii* infection in blood donors in mainland China; a systematic review and meta-analysis[J]. Parasite, 2018(25):36.
- [3] 全国人体重要寄生虫病现状调查办公室,全国人体重要寄生虫病 现状调查报告[J]. 中国寄生虫学与寄生虫病杂志,2005(S1): 332-340.
- [4] Cong W,Dong XY,Meng QF, et al. Toxoplasma gondii infection in pregnant women: a seroprevalence and case-control study in eastern China[J]. Biomed Res Int,2015(2015):170278.
- [5] Dong H.Su R.Lu Y.et al. Prevalence.risk factors.and genotypes of *Toxoplasma gondii* in food animals and humans (2000-2017) From China[J]. Front Microbiol, 2018(9):2108.
- [6] Tyebji S,Seizova S, Hannan AJ, et al. Toxoplasmosis: a pathway to neuropsychiatric disorders [J]. NeurosciBiobehav Rev, 2019 (96):72-92.
- [7] Dhaliwal S. Hoffmann S. White A, et al. cost of hospitalizations for leading foodborne pathogens in the united states:identification by international classification of disease coding and variation by pathogen[J]. Foodborne Pathog Dis,2021,18(11):812-821.
- [8] HartatiS, Kusumawati A, Wuryastuti H, et al. Primary structure of mature SAG1 gene of an indonesian *Toxoplasma gondii* andcomparison with other strains[J]. J Vet Sci, 2006,7(3):263-270.
- [9] Dodangeh S, Daryani A, Sharif M, et al. A systematic review on efficiency of microneme proteins to induce protective immunity against *Toxoplasma gondii*[J]. Eur J Clin Microbiol Infect Dis, 2019,38(4):617-629.
- [10] Gatkowska J.Dzitko K.Ferra BT.et al. The Immunogenic and immunoprotective activities of recombinant chimeric *T. gondii* proteins containing AMA1 antigen fragments[J]. Vaccines (Basel).2020.8(4):724.
- [11] Foroutan M, Ghaffarifar F, Sharifi Z, et al. Rhoptry antigens as *Toxoplasma gondii* vaccine target[J]. Clin Exp Vaccine Res, 2019,8(1):4-26.
- [12] Rezaei F, Sarvi S, Sharif M, et al. A systematic review of *Toxo*-

- [12] Ma HY, Lu CY, Tsao KC, et al. Association of EV71 3C polymorphisms with clinical severity [J]. J Microbiol Immunol Infect, 2018, 51(5):608-613.
- [13] Meng T, Kwang J. Attenuation of human enterovirus 71 highreplication-fidelity variants in AG129 mice [J]. J Virol, 2014, 88 (10):5803-5815.
- [14] Woodman A, Lee KM, Janissen R, et al. Predicting intraserotypic recombination in enterovirus 71 [J]. J Virol, 2019, 93 (4): e02057-18.
- [15] Yoke-Fun C, AbuBakar S. Phylogenetic evidence for inter-typic recombination in the emergence of human enterovirus 71 subgenotypes [J]. BMC Microbiol,2006(6):74.
- [16] Noisumdaeng P, Sangsiriwut K, Prasertsopon J, et al. Complete genome analysis demonstrates multiple introductions of enterovirus 71 and coxsackievirus A16 recombinant strains into Thailand during the past decade [J]. Emerg Microbes Infect, 2018, 7 (1):214.
- [17] Zhou J, Shi Y, Miao L, et al. Molecular epidemiology and recom-

plasma gondii antigens to find the best vaccine candidates for immunization[J]. Microb Pathog, 2019(126):172-184.

- [13] Blake DP, Billington KJ, Copestake SL, et al. Genetic mapping identifies novel highly protective antigens for an apicomplexan parasite[J]. PLoS Pathogens, 2011, 7(2):el001279.
- [14] Cui X, Lei T, Yang D, et al. Toxoplasma gondii immunemapped protein-1 (TgIMP1) is a novel vaccine candidate against toxoplasmosis[J]. Vaccine, 2012, 30(13):2282-2287.
- [15] Cui X, Lei T, Yang DY, et al. Identification and characterization of a novel *Neosporacaninum* immune mapped protein 1[J]. Parasitology, 2012, 139(8):998-1004.
- [16] Bai Y, He SY, Zhao G, et al. Toxoplasma gondii: bioinformatics analysis, cloning and expression of a novel protein TgIMP1[J]. Exp Parasitol, 2012, 132(4): 458-464.
- [17] Yin G,Qin M,Liu X, et al. An *Eimeria* vaccine candidate based on *Eimeria tenella* immune mapped protein 1 and the TLR-5 agonistSalmonella typhimurium FliC flagellin [J]. Biochem Biophys Res Commun, 2013, 440(3):437-442.
- [18] Yin G, Lin Q, Qiu J, et al. Immunogenicity and protective efficacy of an *Eimeria* vaccine candidate based on *Eimeria* tenellaimmunemapped protein 1 and chicken CD40 ligand[J], 2015, 210(1-2):19-24.
- [19] Yin G, Lin Q, Wei W, et al. Protective immunity against eimeria tenella infection in chickens induced by immunization with arecombinant C-terminal derivative of EtIMP1[J]. Vet Immunol Immunopathol.2014.162(3-4):117-121.
- [20] Jia Y, Benjamin S, Liu Q, et al. Toxoplasma gondii immune mapped protein 1 is anchored to the inner leaflet of the plasma membrane and adopts a novel protein fold[J]. BiochimBiophys Acta Proteins Proteom, 2017, 1865(2):208-219.
- [21] Li ZY, Guo HT, Tan J, et al. Devitalization of the immune mapped protein 1 undermines the intracellular proliferation of *Toxoplasma gondii*[J]. Exp Parasitol, 2020(211):107843.

【收稿日期】 2022-03-25 【修回日期】 2022-06-10

bination of enterovirus A71 in mainland China from 1987 to 2017 [J]. Int Microbiol, 2021, 2(19): 1-9.

- [18] Dan X, Wan Q, Yi L, et al. Hsp27 responds to and facilitates enterovirus A71 replication by enhancing viral internal ribosome entry site-mediated translation [J]. J Virol, 2019, 93(9), e02322.
- [19] Rasti M, Khanbabaei H, Teimoori A. An update on enterovirus 71 infection and interferon type I response [J]. Rev Med Virol, 2019,29(1);e2016.
- [20] Ren L, Yang D, Ren X, et al. Genotyping of human rhinovirus in adult patients with acute respiratory infections identified predominant infections of genotype A21 [J]. Sci Rep.2017(7):41601.
- [21] Yee PTI, Mohamed RAH, Ong SK, et al. Characterization of significant molecular determinants of virulence of enterovirus 71 sub-genotype B4 in Rhabdomyosarcoma cells [J]. Virus Res, 2017(238):243-252.
- [22] 刘永娟,周井义,赵绍林,等. 肠道病毒 71 型衣壳蛋白 VP1 研究 进展[J]. 中华实用儿科临床杂志,2018,33(22):1755-1758.
 【收稿日期】 2021-05-15 【修回日期】 2022-07-16

⁽上接 886 页)